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A DIVERGENT SYSTEM OF NON-STATIONARY EQUATIONS OF MOTION OF 
VISCOELASTIC MEDIA IN EULER COORDINATES* 

A.L. NI and V.E. FORTOV 

A system of divergent equations of non-stationary motions of viscoelastic 
media is presented. It is shown that for continuous flows it is equiv- 
alent to the well-known system of equations in /l/. Divergent equations 
are preferable, for instance, from the viewpoint of their utilization 
in calculationalalgoritbms. On the basis of the divergent forms obtained, 
relationships at discontinuities are analysed. 

We introduce a fixed orthonormal system of coordinates with basis vectors el,e,,c,. The 
location of an element of a continuous medium in the initial undeformed state and the running 
time is characterized by the vectors X =(X1,X,,X,) and x = (zl, x2, ~a), where the coordinates 
are referred to the basis selected. 

The relation x = x(X, t) between the running and initial locations of a point determined 
by the motion of the medium results in a relationship for changing the shape of the element 
of the continuous medium 

ds = Ad?:; A = 11 iii, 11, & =(&rJdX,J X, 

Since the consideration is performed in orthogonal coordinates , no distinction is made 
below between the covariant and contravariant subscripts. Moreover, summation is understood 
to be over identical indices in the relationships produced later. 

We introduce a concept often utilized in research. The Cauchy and Almansi strain tensors 
/2/ areameasure of the deformation of the continuous medium. 

e = (E - G).?, e, = (G, - E)/2, G = B*B, G, = A*A 

(E is the unit matrix, B = A-‘, F* is the transpose and F-* is the inverse of the matrix F). 
If dso2 = (dX, dX) and ds2 = (dx, dx) are squares of the undeformed and deformed segment 

lengths connecting two nearby points ofthemedium, then ds,2 - ti = - 2 (sdx, dx) = -2 (e,dX, 
dX) ((a, b) is the scalar product of the vectors a and b), ds2 = (dx, dx) = (G, dX, dX), dso2 = (G dx, 
dx) = (dX, dX). (By definition, 8 and E, characterize the change in the distance between points 
of the continuous medium E, q, G, G, are symmetric tensors. 

The affinor A can be represented in the form /3/: A = RF, = FR, where F,F, are sym- 
metric and positive-definite matrices , and R is an orthogonal matrix. Here, obviously Fr2 = 
G,, F2 = G. 

From the definition of the affinor A and the velocity vector of the element of the con- 
tinuous medium u = (~1, u2, UJ we have 

arlii a.lij _ au, 
~+u,-- ask ---$I AR1 

It follows from the law of conservation of mass that the density is p = poldet A (the 
subscript zero denotes the density of the medium in the initial state). Multiplying both sides 
of the equation for A by pand utilizing the equation of continuity, we conclude that the 
following divergent equations for A are correct (we see by direct calculations that ~?pA~jldx~ = 
0): 

a&j ‘Pu,Aij 

--F+- 

apu,.‘& 

% == ---r-- ft (1) 

which in combination with the divergent equations expressing the laws of conservation of 
momentum and energy 

(2) 

a (P(e + (Iv))) + div(pu(e + $$j)- F=O 
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form the system of equations of motion of a continuous medium. 
To conserve the unity of the discussion, we first consider a non-linear elastic medium. 

The equations of motion for it are closed by the equation of state e = e(A, s) that yields 
the specific internal energy as a function of A and the specific energy .s, where the first 
law of thermodynamics that expresses the connection between the internal energy and entropy 
increments with the work by elastic displacements 

de = p%odA.A-’ + Tds 

is valid, (U = //Uik 11 is the stress tensor, T is the temperature, P o Q = PikQik is the con- 
volution of two matrices). Hence u = p (aelaA),A*. Considering e to be a function of the 
strain tensor e, the expression for u can be converted to the form a =p(E - &)(&/as),. This 
last relationship is the Murnaghan formula /4/. 

The relationships 

- [pA,jl D + Ipu,Aijl - [puiAljn,l = 0 

- IpUiI D + [pUiu,l - [oil;nkl = 0 

- IP (e f (u, u)i2)1 D + [pun (e + (u, ~)‘2) + oi,uin,l = 0 

must be satisfied on the surface of discontinuity S (27 G, where D is the velocity of the 
surface of discontinuity, n is the normal to it, and [f] is the difference between values of 
the quantity f on opposite sides of S. The gradient is CS = (S, ,S, ,S,). 

The conditions for the momentum and energy on the discontinuity are well-known. The 
relations obtained in a formal manner from the divergent equations of motion for A agree on 
the shockwaves with the kinematic relationships /5/ which express continuity of the displace- 
ments. To see this, we rewrite them in a system of coordinates for which the direction of 
one of its axes agrees with n (to be specific, let this be the x1 axis) 

[pA,,l D = 0, 1 = 1, 2, 3 

-_i [A,iI = [u~I ~~Alilt k = 2, 3, i = 1, 2, 3 

j = p’ (D - uI1) = p* (D - u,*) 

(j is the mass flux through the discontinuity). The flow parameters in front of and behind 
the front will be denoted by the superscripts 1 and 2. 

At the time t = 0 let an element of the medium with the Lagrange coordinates X occupy 
the position 50 while the surface of discontinuity agrees with the plane 2, = 0. At the time 
t the radius-vector x of the element of the medium being considered is determined by the 
equation 

x = 10 + u,te (tl - t) + u,t,e (t - tJ + 
uz (t - tl) 8 (t - t*) 

e (5) = 
0, 5<0, 1 ? 1 :>0, 

fl = -+- 
1’ 

(4 is the time the discontinuity reaches this point of the medium). 
Differentiating the expression for xwith respect to X, we obtain relations the agree 

with the relations on the discontinuity that result from the divergent equations of motion. 
The equations of conservation of momentum and energy in the system of coordinates 

selected in the manner mentioned above will yield the relations 

-j Iuil = tUl,l 
[eI = (uill + ~11~) IAi,lI(2P,‘A11’) 

Unlike ideal gasdynamics, assignment of one of the parameters behind a shock front in 
the case of a non-linear elastic medium does not determine the remaining flow parameters 
uniquely. In general, three shock adiabatics correspond here to each initial state: one quasi- 
longitudinal and two quasitransverse /5/. 

The following circumstance is also associated with the more complex structure of the 
equations. 

We examine a fixed discontinuity relative to the substance. In this case j=o and it 
follows from the relationships presented above on the discontinuity that the velocities and 
stresses are continuous during passage across it. The density, entropy and the components A 
are generally discontinuous. In addition to the type of contact discontinuity considered, a 
situation of another kind is possible when the normal velocity and stress components are 
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continuous during passage across the discontinuity, while the tangential components of the 
velocity undergo a discontinuity. As regards the tangential stress components, they should 
be given by using an additional model that describes the friction of the surfaces on each 
other. This case holds on the interface of media with different properties. In particular, 
if there is no such friction, the tangential stresses equal zero. In any case, six conditions 
must be satisfied on a contact discontinuity that ensure its evolution. 

Turning to a consideration of a non-linear viscoelastic medium, we assume the represent- 
ation A = A,4, to be valid, where A,and AP are, respectively, the elastic and plastic parts 
of the affinor .&where the internal energy is a function of the entropy and the elastic part 
A,: e = e (A,, s). Such an assumption means that the strain of an element of the continuous 
medium can be decomposed into two successive processes: first, plastic deformation and then 
elastic deformation from the new state obtained. As is seen from the sequel, plastic de- 
formation in the model under consideration is understood to be the residual deformation of 
the element of the continuous medium after the adiabatic removal of the stress from it. 

Let us writethefirst law of thermodynamics 

de = (J: dA,A;' + Tds 

We will consider the rate of change of A, during the motion oftheelement of the con- 
tinuous medium to be a function of the running parameters of the state 

A,'='D(A,, A, s) (3) 

Here and henceforth, the dot denotes the Lagrange derivative (f =affat + (u, V) f). Combining 
(2) and (3) and the first law of thermodynamics, we obtain an expression for the entropy 
production 

pZ's' = u: A,QA-' 

We hence conclude that the adiabatic process being performed for frozen plastic de- 
formation is simultaneously isentropic. In combination with the equation of state and the 
assignment of the kinetics of plastic deformation, the function Q,, Eqs.(l) and (31 form a 
complete system of equations of motion of a viscoelastic medium. If both sides of (3) are 
multiplied by p and the equation of continuity is used, we obtain the divergent equation 

0 (p-&)/at + 2 &A,) = pa" (4) 

It hence follows that the function A, is continuous at the shock (AP can undergo a dis- 
continuity on the contact discontinuity). 

By analogy with the tensors G and e introduced earlier , we introduce the tensors 

G,= B,*B,, s,=(E-G)/2, I?,=&' 

Since B,*A, +B,A,' = 0, we have the chain of equalities 

G;== B,'*B, + B,*B,'= - B,*(Bp*A'* +@,*)G, - 
G,(A'B,$cD,)B,= -A*-'A'*G,-- G,A'A-'-@z*-4)3 

ml=--AA,@A;', B,=A;: Qa=G,@,B, 

The tensor 8, is subject to the equations 

s~*=',i2A*-?A'*(E - 2s,)+ 'f,(E - 28,) A’A-’ + 'P 
q=(Q** --CD,)/2 

(5) 

which agree with the equations describing the change in the strain tensor /l/, where they are 
obtained from other considerations. The method given here to obtain (5) yields the same 
results, but clarifies the meaning of the strain tensor e introduced in /l/, constructed on 
the basis of the elastic part of the affinor A,. Eqs.(4) are equivalent to the relationships 
in /l/ in the domain of smoothness of the solutions but, unlike them, are in divergent form. 

The matrix Qz,, and therefore Q, also, are not defined uniquely @* = cp + v)A where (Pi 
is any antisymmetric matrix. 

The nature of the ambiguity is seen from the following consideration: 

A,'=-&%*@+ (PA)&Ap 

If A,=Apo and A, =&O at the time t,, then, to the within higher-order infinitesimals, 
at the time t, f At 

AP=-(E+ A,*cpAA&)(E + A,*cpA,At)A," 

The matrix E +A,*~AA,At dorresponds to rotation oftheelement of the continuous medium 
as a whole. HenCe, by virtue of the definitions of A, and A,we see that this ambiguity 
exerts no influence on the motion of the medium and, in particular, on the entropy production. 
The corresponding expression agrees with that presented in /I-/. If it is considered that 
rotation of the element of the medium as a rigid body is referred entirely to A,,then A, is 
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a symmetric matrix. 
We see that the plastic deformation process is performed without a change in volume or 

A, = det A, = I. 
Indeed, by definition 

Ap'= A&&= ApAbijAi;(= ApA,A,*: up = - A$;'.: 9 

The condition Ap' = 0 is equivalent to the requirement of satisfying the continuity 
equation /l/, as is hence seen. 

Now, when the equivalence of the equations obtained to the system of equations in /l/ is 
established, the results of 16, 7/ can be used for their closure , where semi-empiricalequations 
of state and interpolation formulas of the kinetics of plastic deformation for a number of 
metals are presented. 

The authors are grateful to G.I. Kanel' for drawing their attention to this problem. 
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ASYMPTOTIC SOLUTION OF A QUASISTATIC THERMOELASTICITY PROBLEM 
FOR A SLENDER ROD* 

V.F. BUTUZOV and T.A. URAZGIL'DINA 

An asymptotic expansion is constructed for solving a quasistatic thermo- 
elasticity problem for a slender cylindrical rod in the presence of mass 
forces and non-linear heat sources. The algorithm for constructing the 
asymptotic form, based on the method of boundary functions, is fairly 
simple and convenient for carrying out numerical calculations. A 
deduction is made on the basis of the asymptotic form constructed on how 
to select correctly a simplified one-dimensional model so as to obtain 
a better approximation for the solution of the initial two-dimensional 
problem. An existence theorem for the solution is proved under certain 
conditions. 

1. Formulation of the problem. In the linear approximation the system of thermo- 
elasticity equations for the displacement vector u@,y,z,t) and temperature EJ (X,&a,@ in a 
certain domain G has the form fl/ 

PAu f (h + ~~)grad div u + X = p grad 0 + p,,u" 
Atl --x-W - q div u' = -x-~H 

(1.1) 
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